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PREFACE

This RAND Memorandum is devoted -to the examination and development

of new statistical techniques for analyzing accelerated life test data.

It is a part of RAND's continuing intcrest in the theoretical and

practical aspects of reliability.

This Memorandum is addressed to statisticians, data analysts,

reliability engineers, and others ".nterested in the analysis of

accelerated life test data.

Professor Richard E. Barlow, University of California, Berkeley,

is a consultant to The RAND Corporation.
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SUMMARY

This Memorandum examines and develops new techniques for analy'-ing

life test data. It obtains estimates for the life distribution in the

use environment based on data from both the use and the accelerated

environments. The techniques require only physically plausibl is-

sumptions, not the usual ones involving specification of a fa-- ; of

parametric probability distributions. Procedures are given for testing

those assumptions that are made.
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1. INTRODUCTION

It is common practice in certain life testing experiments to

subject test items to overstress conditions. This may take many

different forms. For example, one might subject electronic capacitors

to a high voltage, ball bearings to a high load, or a mechanical assembly

to a strong vibration. The purpose is to shorten the time to failure.

The problem is to predict the time to failure in the norm. or use

environment on the basis of such accelerated life test data. rSee

Winter, Denison, Hietala and Greene (1964) for engineering details and

bibliography.

Let Y (X) be a random variable with distribution G (F) where Y (X)

denotes the time tv failure under normal (accelerated) conditions.

Suppose that F and G are related by a time transformation oy(t), where

F(t) -GrrCt)l

: G-1
so that, assuming G exists,

-1-Y(t) G F(t)

Many authors (e.g., Bessler, Chernoff, and Marshall (1962)] assume

a'(t) - a.t

i.e., a(t) is a scale transformation of the time axis. They also

assume that F and G belong to specified parametric families--usually

the exponential distribution. In certain cases there seems o be some

justification for assuming that the form of the acceleration function

(i.e., the time transformation) is known. Examples are:

Precedi-ig Page Blank
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1. heeters for vacuum tubes [R. L. Guild (1952)];

2. ball bearings [G. Lieblein and M. Zelen (1956)1;

3. paper capacitors [G. J. Levenbach (1957)1; and

_i 4. certain transistors [G. A. Dodson and B. T. Howard (1961)1.

The novelty of the problem of cotrse vanishes when t(t) is assumed

known and the problem becomes a classical life tescing problem. In

this study, we do not assume that c(t) is known--only that a(t) and

the life distributions satisfy certain geometric restrictions which

we believe are intuitively acceptable and reasonable for many appli-

cations. However, we do assume that some sample data from items tested

in the use environment are available, albeit possibly scanty.

In th-s paper, we develop least squares estimators for life dis-

tributions based on the sampling distribution assuming that the failure

rate is increasing on the average. Given life test data from the ac-

celerated and unaccelerated modes, we simultaneously estimate both

distributions assuming only that the life distributions have increasing

failure rate on the average and that accelerated items tend to fail

sooner than unaccelerated items. Applications to fatigue data and

accelerated life tests on duplex capacitors are considered. Procedures

for testing the underlying assumptions are described.
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2. A STATISTICAL MODEL FOR ACCELERATED LIFE TESTING

We assume that observations Y - (Y, Y2,"'. Y-) are available on

items in the unaccelerated mode having distribution G. These may be

results from a truncated or censored life test. It is essential, how-

ever, that we have some failure information on life times in the un-

accelerated mode. In the accelerated mode it will normally be possible

to obtain many more observations, say X - (X1 , X2 , ..., X n) from a

distribution F also unknown, where again these may result from a

censored or truncated test. There are certain natural restrictions

which we would want to impose on the time transformation, a, relating

F and G. Since acceleration reduces the time to failure, we would

expect oy(t) 2 t. Clearly, o' will also be nondecreasing. On the basis

of these properties alone we could consider the problem of obtaining

an estimate for G whic- maximizes the joint likelihood and satisfies

the restrictions. This problem has been solved by Brunk, Franck,

Hanson, and Hogg (1966). However, these estimates impose no re-

strictions on the failure distributions. Utilization of additional

a priori information concerning the life distributions should result

in improved estimates.

Birnbaum, Esary, and Marshall (1966) have characterized the smallest

class of failure distributions containing the exponential distributions

which is closed under the formation of coherent structures. This class

is precisely the class of distributions with increasing failure i-ate

average (IFRA); i.e., if the failure rate r(t) exists, then -J r(u)du

is nondecreasing in t. More generally, a distribution F is IFRA if
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-log[l - F(t)] is nondecreasing in t ?i O. Obviously, this includes
t

the class of distributions with nondecreasing failure rate at.d hence

the exponential distribution.

STATEMENT OF THE PROBLEM

Given ordered observations Y 1 Y2 ! .. . Y from a distribution1 2 m

G (the unaccelerated life distribution) and ordered observations

X1 < X2 ! ... ! Xn ftrvm a distribution F (the accelerated life dis-

tribution), we calculate the empirical distributions G and F corre-m n

sponding to G and F, respectively. We wish to obtain estimates G and
m

F such that
n

1. G and F are IFRA;mn n

2. Gm(x) n n(x) for all x (i.e., stochastic ordering);

3. % and F are closest to G and F , respectively, in a least01 n mi n

squares sense, which will be made precise in Sec. 5.

will then be our estimate for the life distribution in the un-
m

accelerated mode using data from both the accelerated and unaccelerated

environments.

Since in applications one does not always have complete life test

data, we also consider estimation procedures for incomplete data.
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3. LEAST SQUARES ESTIM[ATES FOR IFRA DISTRIBUTIONS

Ansume that each of n units is observed over some or all of its

life. Thus unit i is observed until it either fails at ,a random age

Ti or has attained age Li(is lost to observation), whichever occurs

first (1 = 1, 2, ... , n). The Li, called limits of observation, are

constants or values of other random variables, which are assumed to be

independent of Ti . In accelerated life testing censored and/or

truncated samples are especially common, so that it is important to

consider such data. We now give a procedure for obtaining an estimate

of the unkn~own failure distribution, F, assuming that -log F(t)/t is

nondecreasing on [0, -) where F(t) - 1 - F(t).

3.1 PROCEDURE FOR OBTAINING THE LEAST SQUARES ESTIMATES

(1) Suppose k (1 < k ! n) failures are actually observed. Let

SX ... Xk denote the ordered ages at failure; for convenience,

define X = 0. Let n be the number of items under observation Just

before Xj, 6 be the number of failures at Xj, and I be the number of

"losses" in [xj- 1 , Xl). Then nj+l nj - - IJ+I. Ordinarily, 6

will be one, but may be more than one if the sample contains tied ob-

servations. If there are no losses or ties, n - n - j + 1. Define

the product-limit estimate as

( I, O t<X 1- i
F n(t )  1T (n1 - 8j)/nj, X i ! t < x i I, 0-11 E-1 (3.1)

S , t - XE

where E = ik if k < n
n if k - n

tUndefined if k < n.
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This estimate coincides with the usual empirical sampling distribution

estimate if there are no losses and if k = n. FSee Kaplan and Meier

(2) We obtain a least squares estimate, Fn(t), for the failure

distribution, F, requiring the estimate to have the IFRA property

assumed for the distribution. Let

-log F (X )
X (X ) = ' for i = , 2, ... , F

n i x

and define

t

X n (X j)F nXJ)

X (X = Max Min s (3.2)
ni ts~i t~i n[j

Jins

where

Fn{Xj) = Fn (Xj-) - Fn (X+)•

It is easy to verify from (3.2) that Xn(Xi) will be nondecreasingnodnra in

in i. In Sec. 5 we show that this estimate is closest to X (t) in an

least squares sense. Any nondecreasing function defined at order

statistics as in (3.2) is obviously a permissible etirmate of \. How-

ever, for definiteness, we define

0 nx) t < XI

X n(t) X n ( , Xi 1 t < Xi, 1 11I ..., E-1 (3.3)

t, X .

Out- estimate for the distribution function will then be
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F (M exp L-\ (xI t X. S t < X = 1, .,E-1 (3.4)n n I i+l'

0 t XE .

3.2 PROlCEDURE FOR OBTAINING STOCHASTICALLY ORDERED ESTIMATES

Giv.en observed failures X ! S x . S (k Sn), as before,

from a sample of size n from a distribution F, and observed failures

Y SY !5Y (r S m) from a sample of size m from a distribution

G, we wish to simultaneously estima~te F and C assuming:

i) F and G are IFRA;

ii) 'F(t) !5 i(t) fo r all t _ 0.

Let F 11and G mdenote the product limit estimates for F and C as pre-

viously described (cf. Eq. (3.1)). Let X n(Xi) -log Fn ,i)/ i and

Y (Y )=-log C (Y )/Y idenote estimates of X(X ) X. and of

Y yj, respectively. We wish to determine the X and y iwhich,

subject to the constraints (3.6), minimize

k )1X2 FX r 12
x [xX [ + I [y -Ym(YY G M Y. (3.5)

The minimization must be performed subject to the constraints

1 2 k'~

(3.6)

and

G (t) ;> F n(t).
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To understand the nature of the stochastic ordering restriction

it will be convenient to relabel theY 's. Let YII ! C. Y

denote the first block of Y 's--those less than X1. The set my be

II
empty. Similarly let X~ g Yl g "'" Yl~ < Xi aenote the block of

Yj's in the interval (Xil, Xi).

Our problem is to minimize (3.5) subject to (3.6) and

YiJl i (i - 1, 2, ... , k). This is a stratghtf rward quadratic

programming problem. A RAND code (RSQPF4) is available for solving this

problem. In some applications we can obtain the solution to our problem

in a manner similar to that in which we obtainzd thbz IFRA estimate pre-

viously. To be specific, consider all pnssible "interlacings" of the

,,,,'s among the Xi's, For each such linear ordering we can obtain an
1 i

explicit solution to the problem of minimizing (3.5), subject to the

lin-ar ordering, using Theorem 1 of Sec. 5. Now choose that solution

corresponding to a linear ordered constraint set which has minimum sum

of squ~ares. (Unfortunately, for even moderate k and r, the number of

interlacings that must be considered will be quite large.)

3.3 APPLICATION TO FATIGUE DATA

To ilh.ttrate the ideas discussed above we consider some fatigue

data extracted from a paper by R. P. Felgar (1963). Specimens of

7075-T6 aluminum. alloy were subjected to cyclic loading tnder normaal

air pressure and under near-vacuum conditions. The data are given in

Table 1.

In this application, near-vacuum (simulating o;ter spa,,,) con-

stitutes the use environment and normal air pressure the ac-.lerated

environment. The distributlon of cycles-to-failure in vacu. : is



Tab le 1

ALLOY FATIGUE DATA

Accelerated Environment (Air) Use Environment (Vacuum)

Specimen 105 Cycles-to-Failure Specimen 105 Cycles-to-Failure

X 1,23 3.3

X2  1.41 f2  3.5

X1 1.C2 Y3 14.9

X4  2.08 Y4  40.7

X5  2.09 Y5 45.7

X6  2.30 Y6 46.8

X7  2.82 Y7 58.2

denoted by C, and in normal atmosphere by F.

In our example the number of observations in the use environment

and in the accelerated environment happen to be the same. Often there

will be fewer observations available in the use environment.

Using formula (3.2) to estimate the A n(X i)' and, mutatis mutandis,

the same formula to estimate the y '(V we obtaii'm " "

X7(X) .1253

X (X) .2386

A7(X3) .3075

A 7 (X 4 ) .4074

A 7 (X 5 ) .5994

X 7(X 6) ,0tU

and

y 7 (Yi) - .04,O, 1 i, ... , b.
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The estinmates F7(t) and G(t) are graphed in Figs. 1 and 2. Since
7/

these estimates are already stochastically ordered, the accelerated

observations give us no further information concerning the distribution

G. A statistical test for IFRA, discussed in Sec. 4. does not reject

the hypothesis that G is an exponential distribution. This is also made

credible by our estimate G7* The accelerated data on the other hand are

significantly IFRA according to the total-time-on-test statistic dis-

cussed in Sec. 4.

3.4 ACCELERATED LIFE TESTS ON DUPLEX CAPACITORS

The data in Table 2 were obtained from conducting accelerated life

tests on duplex capacitors. Acceleration is due to a voltage stress

at room temperature. The criterion for failure is the leakage current's

exceeding a certain level. The times to failure are not exact, but

approximately close to the actual failure times. To illustrate our

procedures, we consider data at only three voltage levels.

Note that the 50-volt test was censored at the ninth failure.

Using the totsl-time-on-tb." statistic described in Sec. 4, the 50-volt

and 70-volt data were not significantly IFRA relative to the hypothesis

of exponentiality. They appear, in fact, to follow an exponential

distribution. The 60-volt data, on the other hand, are significantly

IFRA even at the .001 significance level.

As we would expect, the data seem to be stochastically decreasing

with respect to increasing voltage. A statistical test for stochastic

ordering, given censored data and using a modified Wilcoxon statistic,

is disc qsed in the next section.



7 t)

.9

.7-

.6

.4

.3

.2

01 2 3
105 cycles-to-fgoilure

Fig. 1 -Data from accelerated environmnent



-12-

1.0

.9

.8

.7

.6

.5

.4

.3

.2

0 10 20 30 40 50 60
10' cycles-to-foilure

Fig. 2 -- Data from use environment
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Table 2

DUPLEX CAPACITOR ACCELERATED LIFE DATA

50 Volts (Room Temp.) 60 Volts (Room Temp.) 70 Volts (Room Temp.)

n = 13 n = 13 n - 14

Times to Failure (hrs.) Times to Failure (hrs.) Times to Failure (hrs.)

526 56 3
1075 517 526
1075 517 526
1794 517 932
2080 517 1023
2891 517 1193
2891 517 1223
4211 758 2085
4211 758 2296

758 2442
758 4216

1016 4216
1186 4216

5589

The IFRA estimates of the survival probability function, using

Eq. (3.4), for the 50-, 60-, and 70-volt data are graphed in Figs. 3,

4, and 5, respectively.
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Fig. 3 -- 50-volt data
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Fig. 4 -- 60-volt data



-~.6

0

3 -

1

0 12 3 4 5 6
t, thousands of hours

Fig. 5 -- 0-volt data
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4, STATISTICAL TESTS FOR IFRA (DFRA) AND STOCHASTIC ORDERING

Before applying the techniques of this paper to life test data,

ir is first necessary to check the validity of the assumptions made.

A test for IFRA (or DFRA) has been considered by Barlow (1968) and is

described below. (The asymptotic relative efficiency of this test

against various alternatives has been investigated by Bickel and

Doksum (1967).) Suppose the first r failures out of a sample of size

n are recorded. Let X 1 . X2 ! ... < X denote the cbserved failure

times. Note that "withdrawals" may occur between X and X i+ and that

r is, in general, a random variable. Let n(u) be the (random) number

of items on test at time u. The total time on test up to the ith order

statistic is

x
T(Xi) j n(u)du.

0

r-l

The total-time-on-test statistic is T(Xi)/T(Xr). Under the expo-
i-i

nential hypothesis

Tr-i /(r-l) T(X

T(X)

is approximately N(O,l) even for relatively small r. If the distribu-

tion of time to failure is IFRA (DFRA) and Y1 < Y *2 
<- .. < Yr denotes

an independent ordered sample from an exponential distribution, then

r-1 r-1ST(x ) d T(Y d
1 > (<) i-i

T(X) st st T(Y)
r r

*Decreasing failure rate average. Cf. Sec. 2.
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where denotes stochastic ordering. Hence, a natural test rejects

st

exponentiality in favor of IFRA if

r-1

I T(X )
1 ' C
T(X) 

a

where c is defined by

r-1

T(Y
G (r a

and G(x) = -e - x for x >0.

Table 3 presents Z values corresponding to the failure data in

Tables 1 and 2.

Table 3

Z VALUES CALCULATED FROM THE DATA OF TABLES 1 AND 2

Data Z Values

Fatigue Data at 2.8397

air pressure (Table 1)

Fatigue Data at 0.4984
vacuum conditions

(Table 1)

Duplex capacitors at 0.7837

50 volts (Table 2)

Duplex capacitors at 3.2152

60 volts (Table 2)

Duplex capacitors at 0.5511

70 volts (Table 2)

The conclusions concerning the tests of exponentlLAlty versus

iFRA for the alloy data (Sec. 3.3) and for the capacitor data (Sec. 3.4)

were reache h- comparing the Z values in Table 3 with percentage points

of the standard normal distribution.
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TESTS FOR S'OCHASTIC ORDERING

Although stochastic ordering may be obvious from some accelerated

life test data, there may be instances when a statistical test is

appropriate. For example, it is not clear that there is the desired

stochastic ordering between the 60-volt duplex capacitor data and the

70-volt capacitor data.

A generalized Wilcoxon test for comparing arbitrarily singly-

censored samples has been proposed by E. A. Gehan (1965 a,b). We

assume that m and n items are svibject to life test and we observe

X;, ... ' X r 1 censored
j 1

X ... X n-r failuresxrl1+11 n 1'r

YI" .. Y r2 censored

Y r2+1'"''' Ym m-r 2 failures.

(These observations are not necessarily ordered.)

Define

-1 if X < Y or X ! Y'

(i i j i Yj ' ;

U , 0 if X Y or Xi <Y or Y < X or (X Y , i.e., boLh
(1 i X oare censored

+1 if X > Y, or X' Z Y

and calculate the statistic

w- uij

i ,j

r where the sum !a over all rnm comparisons. To test the hypothesis

H :X- Y
0

st
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vel:SU

HIi: X Y
s t

we reject H if
0

Z = < c
=fVar (W I P,Ho)} Ca

where c is determined using the fact that Z is asymptotically N(0,1).

13 S
Var (W P,H) = nm + miMi(Mi-) + iMI(Mi+I)

(n-t)(nm-1) i i=1

+ I, m (m+n-M-L _1 )(n+m-3Mi i-mi-Li- 1)

where

M = mi with Mo 0• i=1o

Lj ti !with L -0

and

m- number of uncensored observations at rank i in rank ordering

of uncensored observations with distinct values (i " 1,2, ..., s);

- number of right-censored observations with values greater than

observations at rank i but less than observations at rank (i+l).

Var (W P,Ho) is the variance of W under H and conditioned on the

pattern of observations, P.
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5. OPTIMALITY OF LEAST SQUARE IFRA ESTIMATORS

In Sec, 3 we described a method for estimating an IFRA distribu-

tion. Since Marshall and Prnschan (n.d.) have shown that the mimximum

likelihood estimate of F assuming F is IFRA is not consistent, we have

employed a least squares criterion which is consistent. Under the IFRA

assumption X(t) -log F(t) is nondecreasing. Given the observedt

failure times X 1 X2 9 ... ! Xk based on a random sample from r we see'k

a "good" estimate of Xut). Letting F denote the product-limit estimaten

(Eq. (3.1)), then

-log F n(X )
X n(X ) - X i

provides an initial estimate of ).(Xi) which will enjoy all of the

properties of the product-limit estimate; e.g., it will be strongly

consistent. It is also known that F is the maximum likelihood estimaten

of F in the class of all distributions (see Kaplan and Meier (Vc,58))

and hence X is the unrestric-ed maximum likelihood estimate for X.
n

Define

t
I X (X )F nX 3

(Xi) = Max mn jus
ssi tzi t

jI F nrXj)

Clearly, ) will be nondecreasing at order statistics. Furthermi)re, ifn

k is any other increasing function, then k has the property thatn

n n -
n(2.( X fX n(X ) n(X )' F fx(

( I I N n (5.1)

+ [ n(Xi) - ).(Xi )1 2Fn Xi.
iin
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Hence

n 2 2
[x(xi) - (Xi)2 Fn[Xi < [X(X i ) -n(X )2 F fXi

i n. i l n

and therefore X is closest to X in the least squares sense with respectn n

to F in the class of nondecreasing functions. A proof of inequalityn

(5.1) can be found in Brunk (1965) and Marshall and Proschan (1965,

Theorem 5.1). For completeness we present a proof for the discrete case.

Theorem 1: (Marsholl and Proschan)

Let h. (I 0, 1, ..., n) be a nondecreasing sequence, 9i an ar-

bitrary sequence, mi 2 0, i = 0, 1, 2, ..., n and

t
gjm

= Max Min t
sgi tni

Jos

then
n n m(g- h1) mi > I (g - hi) Mi + [  (g1 - ) m

inO i= "

i.e., in the class of increasing functions, (go "". g) is closest

to g - (go, "' in the Itast squares with respect to the measure

n

Proof:

Clearly, A1 is Increasing in i. We need only show

n

-(i " hi)(gi " A1) m1 " 0.

i-O

PI



-23-

Suppose i is constant on the interval [a, bl. Then

b
i - h - 9 M

" (h - h>°j (h+b-(g < -h
a- b- b- ~

I ~ ~~ (g1 - jpmjl(hjl - hj) (g - J h
ia Ja Ja

) b
b-I gj'j i b

= 1 m ) (h+ l  -h b - 1mj h.

ia a lxa a ~.IM

Now

i t t

i-a J-a -M a>MHin = Max M4in "
i -- t im t I mt m i

Jia J-a J s

Any nondecreasing function defined at order statistics as in (3.2)

is obviously permissible. However, for definiteness, we define

: O, t < XI

(t) - (xi), x < t xi+l

+ , t > X
n

Note that this estimate will be closest to X (t) for all 0 < t < X
n n

when Xn(Xi) A n(Xi). Our estimate for the distribution function will

then be
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0,t - -. t n

The strong consistency of F nis inherited from the strong consis-

tency of F . By Corollary 3.3 of 7!runk (1965) it follows that
n

Xn Xd- X(X)i < c for i - 1.2, ... , n implies Ix n(X i) A(X)I < E

for i - 1,2, ... , n. Strong consistency follows from the strong con-

sistency of X i

The additional inequalities required by the stochastic ordering

assumption, G(x) .< F~x), are immediately evident upon examining the

graphs of -log G n t) and -log PF (t).
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6. IFRA TIME TRANSFORMATIONS

The stochastic ordering assumption on the time transformation

&Mt >! t is Probably the weakest and most intuitIve requirement on

ae(t). By making a stronger (but mo~re difficult to justify) assumption

on ce(t) we should obtain "improved" estimates.

We adopt the following definition of an IFRA time transformnation: t

Definition

cy(t) is an IFRA time tran.&formation if ot(t)/t is nondecre.tsing in

t - 0 and a(t) z! t.

This definition would be perhaps quite readily acceptable if oY(t)

depended only on the environment and not on the origir:il disti but ion

G. Of course in practice this seems somewhat unlikel,,. Howev.r, this

definition leads to a class of time transformations that seems in-

tuitively reasonable.

Lemmia 1.

a'(t) is an IFRA time transformation if and only if

Mi ot(t) is nondecreasing in t ;! 0;

(ii) ot(t) -. t

(iii) for every IFRA G, we have that F(t) - ro'c(t), is IFRA.

Proof:

(a) Suppose a'(t) is an IFRA time transfo.. tion. Then

-log F(t) /t - 1-1o9 U(ct(t)) /a(t) Wcy(t) /t11 is nondzreasing in t z 0

since ov(t) is nondecreasing in t 2! 0. I.e., F is IFRA.

tWe could alternatively consider IFR time transformations. A dis-

tribution F is IFR if log~l _ F(t)1 is concave on :ts support.
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(b) Suppose conditions (i)-(iii) hold. Choose G to be the unit

exponential distribution and define F(t) G[a(t)]. Then a(t)/t

-log F(t)/t is nondecreasing in t - 0 since F is IFRA.

Clearly, if cyl(t) and c 2 (t) are IFRA tin e transformations then so

is their composition oI[(2(t)].

Lemma 2

If Y <
1 Y2 I "'0 5 Yn (X1 5 x2 !5 X) are order statistics

from G (F) and F(t) GLa(t), where a is an IFRA time transformation,

then

at
YJ - Y > X -x X fr i iJ
:1 i-* j i

at
where > means stochastically greater than. In particular, the sample

range from G is stochastically greater than the sample range from F.

Proof:

* -l , * at
Let Yi M G F(Xi) and note (. ... I n, Yn). Since

- > 1 and is nondecreasing in t > 0,
t t

Y -Y * G- F(X)-G_ F(X)
j i j i

which implies the result. II
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From the results of Barlow and Proachan (1966), it is easy to

verify that IFRA time transformations stochastically decrease order

statistics and the sample coefficient of variation. It follows that

population coefficient of variation and moments are also decreased.

Assnning that a(t)/t - G- F(t)/t is nondecreasing in t > 0 is

equivalent to assuming that F(t) crosses G(et) at most once and from

below if at all for every e > 0. In this sense, F is "sharper" than G.

In analogy with the least squares estimates, we confine attention

to estimates of the form G and F where
V Y

0 , 0< t <Y

-log y(t) dy(Yi ) ' Yi <It <

and -log Fx(t) is defined similarly.

Given observations Y1- < Y2 < (X1 -< Xn) from

a distribution G (F) we wish to estimate both F and G assuming

(i) F and G are IFRA,

(II) G-1F(t)/t is nondecreasing in t > 0

(iii) G- F(t) > t for t > 0

Define y(t) - -log a(t)/t and ym(t) - -log Gm(t)/t where Gm is

the usual empirical distribution or product limit based upon observa-

tions Y < Y2 < ... < Y from the normal or "use" environment. We

consider the problem of minimizing
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[y(x) - Ym(X) 2 dGmX x) - xkn 2 dF(x) (6.1)

with respect to y and X subject to

0 < (Y1) < (Y2) < <(Y)

-l... . A..l0< A(X) _< X(X 2) _< .. _(X n),

CF is nondecreasing in t 0, and G F t. If C n(t) is

nondecreasing in t > 0 and G- F (t) ! t then clearly the least squares

n n

solutions m and A also minimize (6.1).

To understand the restrictions on the time transformaticon, we

make use of the so-called Q - Q plot (Q for quantile) which is widely

used by data analysts [cf. Wilk and Gnanadesikan (1968)]. Let Gy (FA)

denote estimates of C (F). A Q - Q plot based on G and F is merely
Y A

a plot of G FA. If G and F are the empirical distribution functions,
Y Y A

this provides a quick, although heuristic, check on our assumptions

concerning C- F. Let H(x) - 1-ex and consider the graph of H-IG

Y

and H~ F X as illustrated in Figs. 6 and 7. Note that

(H 1 ']-1H-'F M G 1FA.

The parameters associated with line segments are their slopes.

The Line segments, if extended, would pass through the origin. Fix an

ordinate value, say v. Define x(v) to be the largest value of x such

that 1 F (x) _ v and y(v) to be the largest value of y such that

I ; (y) < v. Letting v range over all positive values, plot the
4Y
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locus of points (x(v),y(v)) in Fig. 8. Since G- F(t)/t is nondecreasing

in t >_ 0, we demand the save of CyiF (0/t. Hence GI F will consist

of line segments with increasing slopes, each greater than or equal to

one. Since GyI F cannot be flat over x-axis intervals, we must have

AIX1 > -YiY (6.2)

and

YmiY m > A n-X . (6.3)

If we were to plot points y_1 iY, yiYi , (i - 1,2, ... , m) and

xj.lx, xi)X, (j = 1, 2, ... , n) on the same line , we would see that in-

tervals of the form (y i 1 Yi, YiY i must fall within intervals of the form

(Alij, AjXj) In order that GI F not be constant over intervals.

To minimize (6.1) subject to G, F IFRA and G- F(t)/t nondecreasing

in t > 0 we must minimize (6.1) subject to the constraints

M 0 < Y < 1 < < .. " < X

i 0 i 1- 2 < < n

and
,Yi-i Y i x_ lJi-I Xi

(ii) i 1,2, . m < n)
j = 1,2, ... , n

Y Yi < A xj

where we must consider every possible positioning sequence (Jl'j2, ... , im)

in turn. Given a positioning sequence (j1,J2' ... , im) we must also
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satisfy

<y Y - 1,2, ,.,n-1.
(lit X Yi i - Xji+l / i+l

A computer program is necessary to solve this problem in general. If

r Is large so that we have a good estimate of F, then we may let

j A i and pinimizne (6.1) with respect to y subject to the restrictions

on y.

It is intuitively clear from Fig. 8 that if the 9 estimates are

too high the slopes Xi/ji may not satisfy our requirement Xi/i 1.

Hence the X,'s will tend to force our estimates of the y's down.
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7. A MODIFIED PROBLEM

By introducing additional restrictions on G, the failure distribu-

tion for the use environment, we may obtain an explicit solutioa to

the problem of Sec. 6. Assume

1 , t<Y

G(t) 
1

b exp[-N(t - Y), t - Y

where b and 'v are par3meters to be determined subject to the restriction

e Y y 9 b 5 1. The restriction on b insures that G is IFRA. This is a

more stringent assumption on G than made previously. However, one can

imagine situations where it might be approximately true. Figure 7 is now

a single ray starting above Y with slop.- ' and continuing indefinitely

to the right.

We consider the problem of minimizing

f ( - y(x)]2 dC(x) + B (x) - X n(x) 2 dF n(x) (7.1)

with respect to y and X subject to

AlX1  l 12 Xn-1

0 < y < - and 1 < - ' < ...
Y-Y -Y - -Y

Nott, that in most practical situations Y > X so that y ! X6

11

will automatically imply 1 - Y Let 0 = Y and = X

1 , 2, .. , n - .

We now assume that we are dealing with a complete, noncensored

sample with no tied observations and no losses. Rewriting (7.1) we



-33-

seek to minimize

m 2 n-i
2 [0 0 YlyM(Y) + 1 [0 - (

my J ul nl nX

subject to 0 0 i ' en"

Equivalently, we wish to minimize

M. 2
I m( I )  n-I 2

-2 [- - [0 + J (X )]YI J - nX

subject to 0 <1 < ... < n The solution is immediate from

Theorem 1 if we make the following identification:

go = Y I jm ; .J X ) for j 1, 2, ... , n-I

and

m 1
m 7 mj 2 for j 1, 2, n.

! nXl

Applying the method of this Section to the fati~ue data of Table

i we find

Y - .0193

X1 . 1253

S-.3075

x4 u .4074

5 - .5994

X6 = .8460
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Comparing these estima~es with those in Sec. 3.3, we note that our

estimate of the failure rate in vacuum (the use environment in this

case) is less, iey -. 0193 versub .0450 in Sec. 3.3.
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